32,064 research outputs found

    Resettable Zero Knowledge in the Bare Public-Key Model under Standard Assumption

    Full text link
    In this paper we resolve an open problem regarding resettable zero knowledge in the bare public-key (BPK for short) model: Does there exist constant round resettable zero knowledge argument with concurrent soundness for NP\mathcal{NP} in BPK model without assuming \emph{sub-exponential hardness}? We give a positive answer to this question by presenting such a protocol for any language in NP\mathcal{NP} in the bare public-key model assuming only collision-resistant hash functions against \emph{polynomial-time} adversaries.Comment: 19 pag

    Wavelet Galerkin method for fractional elliptic differential equations

    Full text link
    Under the guidance of the general theory developed for classical partial differential equations (PDEs), we investigate the Riesz bases of wavelets in the spaces where fractional PDEs usually work, and their applications in numerically solving fractional elliptic differential equations (FEDEs). The technique issues are solved and the detailed algorithm descriptions are provided. Compared with the ordinary Galerkin methods, the wavelet Galerkin method we propose for FEDEs has the striking benefit of efficiency, since the condition numbers of the corresponding stiffness matrixes are small and uniformly bounded; and the Toeplitz structure of the matrix still can be used to reduce cost. Numerical results and comparison with the ordinary Galerkin methods are presented to demonstrate the advantages of the wavelet Galerkin method we provide.Comment: 20 pages, 0 figure

    Concurrently Non-Malleable Zero Knowledge in the Authenticated Public-Key Model

    Full text link
    We consider a type of zero-knowledge protocols that are of interest for their practical applications within networks like the Internet: efficient zero-knowledge arguments of knowledge that remain secure against concurrent man-in-the-middle attacks. In an effort to reduce the setup assumptions required for efficient zero-knowledge arguments of knowledge that remain secure against concurrent man-in-the-middle attacks, we consider a model, which we call the Authenticated Public-Key (APK) model. The APK model seems to significantly reduce the setup assumptions made by the CRS model (as no trusted party or honest execution of a centralized algorithm are required), and can be seen as a slightly stronger variation of the Bare Public-Key (BPK) model from \cite{CGGM,MR}, and a weaker variation of the registered public-key model used in \cite{BCNP}. We then define and study man-in-the-middle attacks in the APK model. Our main result is a constant-round concurrent non-malleable zero-knowledge argument of knowledge for any polynomial-time relation (associated to a language in NP\mathcal{NP}), under the (minimal) assumption of the existence of a one-way function family. Furthermore,We show time-efficient instantiations of our protocol based on known number-theoretic assumptions. We also note a negative result with respect to further reducing the setup assumptions of our protocol to those in the (unauthenticated) BPK model, by showing that concurrently non-malleable zero-knowledge arguments of knowledge in the BPK model are only possible for trivial languages
    • …
    corecore